

Overview of migrating Tuya's MCU SDK

Device Development > Access Mode MCU > Wi-Fi General Solution >

Software Reference Wi-Fi

Version: 20200226

Contents

1	Introduction	1
2	Precautions	2
3	ile Structure	3
4	Roadmap	4
	4.1 Compile the MCU basic program and migrate the SDK file	4
	4.2 Verify the macro definition in protocol.h	5
	4.3 Migrating the protocol.c File and Invoking Functions	8
	4.4 Processing DP Data Report and Delivery Functions	9
	4.5 Optimize the network configuration and indicator functions	10
	4.6 Optimize the product testing function.	13

1 Introduction

The **mcu_sdk** package contains the MCU code that is automatically generated based on product functions defined on the Tuya Smart platform. The communication and protocol resolution architecture is prepared and can be directly added to the original MCU project to quickly develop MCU programs.

2 Precautions

The SDK package has the following requirements on MCU hardware resources:

- Flash memory: 4 KB
- RAM: tens of bytes (depending on the DP data length), or 260 KB or higher if the OTA upgrade function is required
- The number of nested functions is 9.

Users without sufficient resources can implement protocol interworking without using the MCU SDK.

3 ile Structure

Execution	Header	
File	File	Description
mcu_api.c	mcu_api	Contain Wi-Fi-related functions. Customers can invoke the functions on demand.
protocol.c	protocol.	hProtocol files that contain data processing functions. Users need to modify the two files based on project requirements.
system.c	system.ł	Contain detailed implementation of the serial port communication protocol.
	wifi.h	Contains Wi-Fi-related macro definitions.

4 Roadmap

- Step 1: Compile the MCU basic program and migrate the SDK file.
- Step 2: Verify the macro definition in **protocol.h**.
- Step 3: Migrate the **protocol.c** file and invoke functions.
- Step 4: Optimize the DP data report and delivery functions.
- Step 5: Optimize the network configuration and indicator functions.
- Step 6: Optimize the product testing function.

4.1 Compile the MCU basic program and migrate the SDK file.

Add the .c and .h files in the mcu_sdk folder and corresponding header file reference path to the original project. Initialize MCU-related peripherals, including the serial port, external interrupt (button), and timer (indicator blinking).

4.2 Verify the macro definition in protocol.h.

4.2.1 Verify the product information

PRODUCT_KEY indicates the macro definition of the product ID (PID), which is the unique identifier of a product. Ensure that the PID is the same as that displayed on the Tuya Smart platform. If the PIDs are different, download the latest SDK package. MCU_VER indicates the software version, which is 1.0.0 by default. If the MCU requires OTA upgrade, you need to update the version number after the OTA upgrade. CONFIG_MODE indicates the network configuration mode, and the typical value is DEFAULT, indicating the default network configuration mode.

tuyດ.com Product Ap	Service Value-added Services	Purchase Data Operation	Document
Dashboard > Product > Smart Product: h	ater		
≡ Site Map	O App L Function Definition App L	I Design Hardware Debug	Advanced Features Mass Production
	Submit your question.	Exclusive service t	◎ 怎么设计电路板,4色球泡灯 eam
heater	Standard Functions Setting		
Category: Heater PID: 3yzaosdpvbjbexzu	DP ID Function Identifier Da points	ta type Function type Properties	remark Operate
Edit Product Information	1 Switch switch Iss	ue and report Boolean	Edit Delete
79 **			
80 **			
81 .*********************	*****	*****	*****/
82 = #ifndefPROTOCOL	<u>_H</u>		
83 #definePROTOCOL	<u>_H</u>		
84			
85			
87 0 /***************	*****		*****
88	用户相关信息配置		
89 -************	*****	*****	*****/
90 -/*****************	******	*****	*****
91	1:修改产品信息		
92 -************	*****	* * * * * * * * * * * * * * * * * * * *	*****/
93 #define PRODUCT KE	!"svizlf0dzs4rz85c" //尹	「发平台创建产品后生成的16位	字符产品唯一标识
94		TT	
94 95 #define MCU_VER "1	0.0"	//用户的软件版本	,用于MCU固件升级,MCU升级版本需修改
94 95 #define MCU_VER "1 96	0.0"	//用户的软件版本	,用于MCU固件升级,MCU升级版本需修改
94 95 <mark>#define MCU_VER "1</mark> 96 97 //配网方式选择,默V	0.0" 为config_mode_default,只能	//用户的软件版本 三选一	,用于MCU固件升级,MCU升级版本需修改
94 95 #define MCU_VER "1 96 97 //配网方式选择,默认 98 #define CONFIG_MODI	0.0" 为CONFIG_MODE_DEFAULT,只能 CONFIG_MODE_DEFAULT	//用户的软件版本 三选一 //默认配网方式	,用于MCU固件升级,MCU升级版本需修改 →
94 95 #define MCU_VER "1 96 97 //配网方式选择,默认 98 #define CONFIG MODI 99 //#define CONFIG MODI 99 //#define CONFIG_M	0.0" 为CONFIG_MODE_DEFAULT,只能 CONFIG_MODE_DEFAULT DE CONFIG_MODE_LOWPOWEI	//用户的软件版本 三选一 //默认配网方式 R //低功耗配网方式	,用于MCU固件升级,MCU升级版本需修改 式
94 95 96 97 //配网方式选择,默认 98 #define CONFIG_MOD 99 //#define CONFIG_MOD 99 //#define CONFIG_MOD	0.0" 、为CONFIG_MODE_DEFAULT,只能 : CONFIG_MODE_DEFAULT DE CONFIG_MODE_LOWPOWEI DE CONFIG_MODE_SPECIAL	//用户的软件版本 三选一 //默认配网方式 a //低功耗配网方式 //特殊配网方式	,用于MCU固件升级,MCU升级版本需修改 式

4.2.2 Check whether the MCU firmware needs to be upgraded

If OTA upgrade of MCU firmware is required, enable the firmware update macro, which is disabled by default.

/*****	*******	*********	
	2:MCU是否需要支固件	⊧升级	
如需要支持MCU固件	+升级,请开启该宏		
MCU可调用mcu api.	.c文件内的mcu firm update qu	ery()函数获取当前MCU固件更新情况	
_	*******WARNING!!!**	*****	
当前接收缓冲区为:	关闭固件更新功能的大小,固件チ	₩级包为256字节	
如需要开启该功能,	串口接收缓冲区会变大		
*****	*******	*******************************	
//#define	SUPPORT MCU FIRM UPDATE	//开启MCU固件升级功能(默认关)	ਗ)
	· · · · · · · · · · · · · · · · · · ·		

4.2.3 Define the transmitting and receiving buffers

Modify the buffer size based on the DP definition. The size of the serial port transmitting and receiving buffers must be larger than the maximum DP data length. The default size is 24 bytes. If MCU OTA upgrade is required, a 260-byte buffer is recommended. The receiving buffer size can be reduced if the RAM has insufficient space.

4.2.4 (Mandatory) Define the working mode of the Wi-Fi module

1) If the MCU controls network configuration triggering and indication, that is, the Wi-Fi reset button and Wi-Fi indicator are on the MCU side, enable cooperative processing by the Wi-Fi module and MCU (common mode) and ensure that #define is commented (the line of code starts with "//").

/	4:定义模块工作方式	
模块自处理	1:	
	wifi指示灯和wifi复位按钮接在wifi模块上(开启WIFI_C	ONTROL_SELF_MODE宏)
ware to the and	开止确定义WF_STATE_KEY和WF_RESET_KEY	
MCU E XCHE:	: wifi指示灯和wifi复位按钮接在MCU上(关闭WIFI CONTRO)	L SELF MODE宏)
	MCU在需要处理复位wifi的地方调用mcu api.c文件内的m	cu_reset_wifi()函数,并可调用mcu_get_reset_wifi_flag()函数返回复位wifi结果
	_	ode(WIFI_CONFIG_E_mode)函数,开ባ调用mcu_get_wifi_work_state()函数返回改置wifi结果
//#define	WIFI_CONTROL_SELF_MODE	//wifi自处理按键及LED指示灯;如为MCU外界按键/LED指示灯请关闭该宏

2) If the Wi-Fi indicator and Wi-Fi reset button are on the Wi-Fi module, execute the following statement to enable processing by the Wi-Fi module: #ifdef WIFI_CONTROL_SELF_MODE Then, add information about the GPIO pins connected to the Wi-Fi indicator and Wi-Fi reset button, as shown in the following figure.

#define #ifdef	WIFI_CONTROL_SE WIFI_CONTROL_SE	LF_MODE LF_MODE	//wifi自处理按键及LED指示灯;如为MCU外界按键/LED指示灯请关闭该宏 //模块自处理
#define	WF STATE KEY	14	//wifi模块状态指示按键,请根据实际GPIO管脚设置
#define	WF RESERT KEY	0	//wifi模块重置按键,请根据实际GPIO管脚设置
#endif			

4.2.5 Check whether the MCU needs time verification

If the time verification function is required, enable the RTC check macro.

Write mcu_write_rtctime in the Protocol.c file to implement the code. After the Wi-Fi module successfully connects to the network, the MCU can invoke the mcu_get_system_time() function to initiate time verification.

4.2.6 Check whether the Wi-Fi product testing function is enabled

To ensure mass production efficiency and quality, we recommend that you enable the product testing macro. For details about implementation of the product testing function, see section 3.3.6 "Optimizing the Product Testing Function."

	6:MCI	U是否需要支持wifi	功能测试	
如需要请开启该宏,;	并且mcu在	需要wifi功能测试	处调用mcu api.c文件内mcu sta:	rt wifitest
并在protocol.c文件	wifi test	t result函数内查视	看测试结果,	-
wifi test result内]部有#err	提示,完成函数后请	f删除该#err	
****	*******	******	*************	*******/
#define W1	IFI_TEST_	ENABLE	//开启WIFI产测功能	

4.3 Migrating the protocol.c File and Invoking Functions

- 1. Use #include "wifi.h" in the files (for example, the main.c file) that require Wi-Fi-related files.
- 2. After MCU peripherals are initialized, invoke the wifi_protocol_init() function in the mcu_api.c file.
- 3. Add the single-byte sending function of the MCU serial port to the uart_transmit_output function in the protocol.c file and delete #error. The following figure shows an example.

```
protocol.c
 124
 125 -/************************
     函数名称 : uart_transmit output
 126
     功能描述 : 发数据处理
 127
     输入参数 : value:串口收到字节数据
 128
     返回参数 : 无
 129
     使用说明 : 请将Mcu串口发送函数填入该函数内,并将接收到的数据作为参数传入串口发送函数
 130
 131
 132
     void uart_transmit_output(unsigned char value)
 133 🖂 {
         #error "请将MCU串口发送函数填入该函数,并删除该行"
 134
      UART3 SendByte(value);
 135
 136 白/
 137
       //示例:
 138
       extern void Uart_PutChar(unsigned char value);
                                                    //串口发送函数
 139
       Uart PutChar(value);
 140
     */
    L,
 141
```

4. Invoke the uart_receive_input function in the mcu_api.c file in the serial port receiving interrupt service function, and use the received characters as parameter input. The following figure shows an example.

```
213 void USART3_IRQHandler(void)
214 🖯 {
       /* USER CODE BEGIN USART3_IRQn 0 */
215
216
      unsigned char Res=0;
217
218
         if ((USART3->SR&UART FLAG RXNE) != 0)
219
        - {
           Res=USART3->DR;
220
221
          uart_receive_input(Res);
222
223
224
    }
```

5. Invoke the wifi_uart_service() function in the mcu_api.c file after the MCU enters the while cycle. The following shows an example of code structure in main.c.

include "wifi.h" ... void main(void) { wifi_protocol_init(); ... while(1) { wifi_uart_service(); ... } } Note: The MCU must directly invoke the wifi_uart_service() function in the mcu_api.c file in while. After the program is successfully initialized, it is recommended that the serial port interrupt not be disabled. If the serial port interrupt

must be disabled, ensure that the interrupt is disabled for only a short time to prevent serial port data loss. Do not invoke the report function in the interrupt.

4.4 Processing DP Data Report and Delivery Functions

4.4.1 Reporting data of all DPs

After the Wi-Fi module restarts or the network is reconfigured, the Wi-Fi module proactively delivers a status query command. The MCU needs to report the status of the device's DPs to the Wi-Fi module for synchronization. (1) Open protocol.c and locate the all_data_update(void) function. (2) Enter initial values of all DPs to be reported into corresponding report functions. The values will be displayed on the App control panel. Note: Do not invoke the all_data_update() function manually. This function is automatically invoked at a specific time.

4.4.2 Reporting data of a single DP

When the status of a DP is changed, the MCU proactively reports the new DP status to the Wi-Fi module, and the DP status displayed on the App will be updated accordingly. The report data format is mcu_dp_xxxx_updata(DPID_X,n). DPID_X indicates the DP whose status has changed. Functions in all_data_update() can be independently invoked. Example: mcu_dp_bool_update(DPID_SWITCH,1); //Boolean data reporting mcu_dp_value_update(DPID_TEMPER_SET,25); //Value data reporting mcu_dp_string_update(DPID_DAY,"1234",4); //String data reporting

4.4.3 DP data delivery

Each deliverable DP has an independent data delivery processing function in the protocol.c file. The function format is dp_download_xxx_handle(), and xxx indicates a deliverable DP. After the function parses a DP, the MCU performs logical control in the corresponding position. The following shows an example of receiving switch data.

The MCU uses MCU_ON_switch1() and MCU_OFF_switch1() to turn on and off a switch, respectively. When the device status is changed under non-App control, the MCU invokes mcu_dp_bool_update(DPID_SWITCH_1,switch_1) to upload the real status of the switch. Typically, the receiving processing function automatically invokes the function.

4.5 Optimize the network configuration and indicator functions.

Skip this section if processing by the Wi-Fi module is used. When protocol migration is successful, the network configuration command and indicator function need to be optimized for network configuration. In mode of cooperative processing by the Wi-Fi module and MCU, the MCU can select the network configuration triggering and indication modes based on actual requirements. Typically, network configuration is triggered by the Wi-Fi reset button and indicated by quick or slow blinking of the Wi-Fi indicator. We recommend that you enable both network configuration modes for your product. Smart network configuration mode: The operation is simple and convenient, and the Wi-Fi indicator blinks quickly. AP network configuration mode: Network configuration is reliable, and the Wi-Fi indicator blinks slowly.

4.5.1 Network configuration command

The network configuration command can be implemented by the mcu_reset_wifi() and mcu_set_wifi_mode() functions. Typically, these two functions are invoked in the button processing function after the button is pressed for network configuration. After mcu_reset_wifi() is invoked, the Wi-Fi module is reset and the previous network configuration information is cleared. The function invoking also triggers a switchover between the AP and smart network configuration modes.

After mcu_set_wifi_mode() with parameter SMART_CONFIG or AP_CONFIG is invoked, the network configuration information is cleared, and smart or AP network configuration mode is used. This function has the same function as the mcu_reset_wifi() function. You can select one as needed.

4.5.2 Network configuration indication

Typically, the mcu_get_wifi_work_state() function is invoked at while(1) to return the Wi-Fi status. Then, you write the indicator blinking mode in based on the Wi-Fi status.

Device Network Connection Status	Description	Status Value	LED Indicator Status
State 1	Smart network configuration	0x00	The indicator blinks at 250 ms intervals.
State 2	AP network configuration	0x01	The indicator blinks at 1500 ms intervals.
State 3	The Wi-Fi is configured. However, the device fails to connect to the router.	0x02	The indicator is off.
State 4	The Wi-Fi is configured, and the device successfully connects to the router.	0x03	The indicator is steady on.
State 5	The device connects to the router and cloud.	0x04	The indicator is steady on.
State 6	The Wi-Fi device is in low power consumption mode.	0x05	The indicator is off.

Invoke the mcu_get_wifi_work_state() function to obtain the Wi-Fi status. The function architecture is as follows: tuyດັ

```
1 void main(void)
 2
   {
 3
        . . .
4
5
        while(1)
6
        {
7
            switch(mcu_get_wifi_work_state())
8
            {
9
                case SMART_CONFIG_STATE:
10
                //smart config configuration state: LED flash quickly; the
                   user needs to complete the configuration
11
                break;
12
                case AP_STATE:
13
                //AP configuration state: LED flash slowly
14
               break;
15
                case WIFI_NOT_CONNECTED:
16
                //Wi-Fi configuration is finished; the router is being
                   connected to; LED keeps long dark
17
                break;
18
                case WIFI_CONNECTED:
19
                //The router is successfully connected to; LED keeps long
                   bright
20
                break:
21
                default:break;
22
            }
23
            . . .
24
       }
25 }
```

4.6 Optimize the product testing function.

Notes: product test is used only in production, and it is mainly used to test the Wi-Fi function of modules and the communication capability of module and control panel.

The test requires no network connection, and the product test process is triggered by pressing button. The test process takes about 5s.

Note:

1. There shall be as less routers as possible to speed up test of products. 2. Please wait for 2 seconds after the system is connected to the power supply so that the module is started. 3. Product test is not required in daily use.

Figure 1: cmd-markdown-logo

4.6.1 Preparation

One 2.4G wireless router and power supply, and network connection is not required. The SSID of router will be set to **tuya_mdev_test**, and it will be placed in the work-shop of the production line.

4.6.2 Connect the device to be tested to the power supply.

4.6.3 Trigger the product test.

mcu will press button and hold it to trigger product test (the trigger mode is realized by mcu, it is recommended to use key combination that is uncommon or press some keys for a long period to trigger product test function).

Then the following interfaces will be invoked to trigger product test:

- When mcu_sdk is used, mcu invokes mcu_start_Wi-Fi test()
 - When mcu_sdk is not used, mcu sends0x55 0xaa 0x00 0x0e 0x0000 0x0d

4.6.4 Check results of test

The following methods can be used to check test results based on whether the mcu_sdk provided by Tuya is used.

mcu_sdk is used. Check results of tests in the wifi_test_result()function of the protocol.c file.

```
1 void wifi_test_result(unsigned char result,unsigned char rssi)
2 {
```

#error "Please add your own codes for successful or failed Wi-Fi function test and delete this line when codes are added."

if(result == 0) { //Test failed if(rssi == 0x00) { //The tuya_mdev_test router is not found in the scanning, please check it } else if(rssi == 0x01) { //The module is not authorized } } else { //Test succeeded //rssi represents signal strength (0-100, 0 represents the weakest signal, and 100 represents the strongest signal) } }

mcu_sak is not used Check results of lests according to received data	mcu_s	dk is not used	Check results of tests	according to received data
---	-------	----------------	------------------------	----------------------------

	MCU上 报	0x55aa	0x00	0x0e	0x0000		0x0d
WiFi功能 产测 (注: 扫描 tu ya_mde v_test 的 指定SSID)	模块 发送	0x55aa	0x00	0x0e	0x0002	数据长度为2字节: Data[0]:0x 00失败,0x01成功;当Data[0] 为0x01,即成功时,Data[1]表 示信号强度(0-100,0信号最差 ,100信号最强)当Data[0]为0x0 0,即失败时,Data[1]为0x00 表示未扫描到指定的ssid,Dat a[1]为0x01表示模块未烧录授 权key	校验和

Figure 2: cmd-markdown-logo

4.6.5 Display test results

The tests have three kinds of test results, and test results will be displayed on the display screen of the control panel.

- 1. Signal strength
- 2. The tuya_mdev_test router is not found in the scanning, please check it
- 3. he module is not authorized